СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ: НАПРЯЖЕНИЕ И ДЕФОРМАЦИЯ - ορισμός. Τι είναι το СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ: НАПРЯЖЕНИЕ И ДЕФОРМАЦИЯ
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

Τι (ποιος) είναι СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ: НАПРЯЖЕНИЕ И ДЕФОРМАЦИЯ - ορισμός

Брус (сопротивление материалов)

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ: НАПРЯЖЕНИЕ И ДЕФОРМАЦИЯ      
К статье СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ
Виды напряжений. Самое важное понятие в сопротивлении материалов - это понятие напряжения как силы, действующей на малую площадку и отнесенной к площади этой площадки. Напряжения бывают трех видов: растяжения, сжатия и сдвига.
Если на металлическом стержне подвешен груз, как показано на рис. 1,а, то такой стержень называется растянутым или работающим на растяжение. Напряжение S, создаваемое силой P в растянутом стержне с площадью поперечного сечения, равной A, дается выражением S = P/A. Если вес груза равен 50 000 Н, то растягивающая сила тоже равна 50 000 Н. Далее, если ширина стержня равна 0,05 м, а толщина - 0,02 м, так что площадь поперечного сечения составляет 0,001 м2, то растягивающее напряжение равно 50 000/0,001 = 50 000 000 Н/м2 = 50 МПа. Растянутый стержень длиннее, чем до приложения растягивающих сил.
Рассмотрим короткий цилиндр (рис. 1,б), на верхний торец которого положен груз. При этом во всех поперечных сечениях цилиндра действуют напряжения сжатия. Если напряжение равномерно распределено по всему сечению, то справедлива формула S = P/A. Сжатый цилиндр короче, чем в отсутствие деформаций.
Напряжение сдвига возникает, например, в болте (рис. 2,а), на котором верхним концом держится растянутый стержень AB с грузом 50 000 Н (рис. 1,а). Болт удерживает стержень, действуя с силой 50 000 Н, направленной вверх, на ту часть стержня, которая расположена непосредственно над отверстием в стержне, а стержень в свою очередь давит на среднюю часть болта с силой 50 000 Н. Силы, действующие на болт, приложены так, как показано на рис. 2,б. Если бы болт был сделан из материала с низким пределом прочности на сдвиг, например из свинца, то он был бы срезан по двум вертикальным плоскостям (рис. 2,в). Если же болт стальной и достаточно большого диаметра, то он не срежется, но в двух его вертикальных поперечных сечениях будут существовать напряжения сдвига. Если напряжения сдвига равномерно распределены, то они даются формулой S = P/A. Полная сила сдвига, действующая в каждом из поперечных сечений, равна 25 000 Н, и если диаметр болта равен 0,02 м (площадь поперечного сечения равна приблизительно 0,0003 м2), то напряжение сдвига Ss будет составлять 25 000 Н/0,0003 м2, т.е. немногим более 80 МПа.
Напряжения растяжения и сжатия направлены по нормали (т.е. вдоль перпендикуляра) к площадке, в которой они действуют, а напряжение сдвига - параллельно площадке. Поэтому напряжения растяжения и сжатия называются нормальными, а напряжения сдвига - касательными.
Деформация. Деформацией называется изменение размера тела под действием приложенных к нему нагрузок. Деформация, отнесенная к полному размеру, называется относительной. Если изменение каждого малого элемента длины тела одинаково, то относительная деформация называется равномерной. Относительную деформацию часто обозначают символом ?, а полную - символом ?. Если относительная деформация постоянна по всей длине L, то . = ?/L. Например, если длина стального стержня до приложения растягивающей нагрузки равна 2,00 м, а после нагружения - 2,0015 м, то полная деформация . равна 0,0015 м, а относительная - . = 0,0015/2,00 = 0,00075 (м/м).
Почти для всех материалов, применяемых в строениях и машинах, относительная деформация пропорциональна напряжению, пока оно не превысит т.н. предела пропорциональности. Это очень важное соотношение называется законом Гука. Оно было экспериментально установлено и сформулировано в 1678 английским изобретателем и часовых дел мастером Р.Гуком. Данное соотношение между напряжением и деформацией для любого материала выражается формулой S = E?, где E - постоянный множитель, характеризующий материал. Этот множитель называют модулем Юнга по имени Т.Юнга, который ввел его в 1802, или же модулем упругости. Из обычных конструкционных материалов наибольший модуль упругости у стали; он равен примерно 200 000 МПа. В стальном стержне относительная деформация, равная 0,00075, из приводившегося ранее примера вызывается напряжением S = E. = 200 000?0,00075 = 150 МПа, что меньше предела пропорциональности конструкционной стали. Если бы стержень был из алюминия с модулем упругости около 70 000 МПа, то, чтобы вызвать ту же самую деформацию 0,00075, достаточно было бы напряжения немногим более 50 МПа. Из сказанного ясно, что упругие деформации в строениях и машинах очень малы. Даже при сравнительно большом напряжении 150 МПа из приведенного выше примера относительная деформация стального стержня не превышает одной тысячной. Столь большая жесткость стали - ее ценное качество.
Чтобы наглядно представить деформацию сдвига, рассмотрим, например, прямоугольную призму ABCD (рис. 3). Ее нижний конец жестко заделан в твердое основание. Если на верхнюю часть призмы действует горизонтальная внешняя сила F, она вызывает деформацию сдвига, показанную штриховыми линиями. Смещение . есть полная деформация на длине (высоте) L. Относительная деформация сдвига . равна ?/L. Для деформации сдвига тоже выполняется закон Гука при условии, что напряжение не превышает предела пропорциональности для сдвига. Следовательно, Ss = Es?, где Es - модуль сдвига. Для любого материала величина Es меньше E. Для стали она составляет около 2/5 E, т.е. приблизительно 80 000 МПа. Важный случай деформации сдвига - деформация в валах, на которые действуют внешние скручивающие моменты.
Выше речь шла об упругих деформациях, которые вызываются напряжениями, не превышающими предела пропорциональности. Если же напряжение выходит за предел пропорциональности, то деформация начинает расти быстрее, чем напряжение. Закон Гука перестает быть справедливым. В случае конструкционной стали в области, лежащей чуть выше предела пропорциональности, небольшое увеличение напряжения приводит к увеличению деформации во много раз по сравнению с деформацией, соответствующей пределу пропорциональности. Напряжение, при котором начинается столь быстрый рост деформации, называется пределом текучести. Материал, в котором разрушению предшествует большая неупругая деформация, называется пластичным.
деформация         
ИЗМЕНЕНИЕ ВЗАИМНОГО ПОЛОЖЕНИЯ ЧАСТИЦ ТЕЛА, СВЯЗАННОЕ С ИХ ПЕРЕМЕЩЕНИЕМ ДРУГ ОТНОСИТЕЛЬНО ДРУГА
Пластическая деформация; Деформация (механическая); Относительное удлинение; Остаточная деформация; Относительная деформация; Жёсткость тела; Смятие
ж.
1) Изменение размеров, формы твердого тела под действием внешних сил (обычно без изменения его массы).
2) Любое изменение, отклонение чего-л. от нормы.
Деформация         
ИЗМЕНЕНИЕ ВЗАИМНОГО ПОЛОЖЕНИЯ ЧАСТИЦ ТЕЛА, СВЯЗАННОЕ С ИХ ПЕРЕМЕЩЕНИЕМ ДРУГ ОТНОСИТЕЛЬНО ДРУГА
Пластическая деформация; Деформация (механическая); Относительное удлинение; Остаточная деформация; Относительная деформация; Жёсткость тела; Смятие
Деформа́ция (от  — «искажение») — изменение взаимного положения частиц тела, связанное с их перемещением друг относительно друга за счет приложения усилия, при котором тело искажает свои формы. Обычно деформация сопровождается изменением величин межатомных сил, мерой которого является упругое механическое напряжение.

Βικιπαίδεια

Брус (механика)

Брус (в механике материалов и конструкций) — модель тела, у которого один из размеров гораздо больше двух других. При расчётах брус заменяют его продольной осью. В строительной механике вместо термина "брус" в том же значении чаще используют термин стержень, который входит в состав общепринятого термина К стержневым системам относятся фермы, рамы и многие другие. Термин же "брусчатые системы" в литературе не используется, за исключением характеристики срубного строения (дом из деревянных брусьев или брёвен). Что касается термина "брус", то он корректно используется для характеристики пиломатериала, имеющего примерно одинаковые размеры поперечного сечения.

По виду деформации (нагрузки):

  • Стержень — брус, работающий на растяжение-сжатие
  • Вал — брус, работающий на кручение
  • Балка — брус, работающий на изгиб

По геометрической форме:

  • прямолинейные
  • криволинейные

По виду поперечного сечения:

  • постоянного сечения
  • переменного сечения
  • ступенчатые

По виду нагружения:

  • плоские
  • пространственные
Τι είναι СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ: НАПРЯЖЕНИЕ И ДЕФОРМАЦИЯ - ορισμός